Грязнов А.В.
The article is devoted to the development of a hybrid method for predicting and preventing the development of troubles in the process of drilling wells based on machine learning methods and modern neural network models. Troubles during the drilling process, such as filtrate leakoff; gas, oil and water shows and sticking, lead to an increase in unproductive time, i.e. time that is not technically necessary for well construction and is caused by various violations of the production process.
Статья посвящена разработке гибридного метода прогнозирования и предупреждения развития осложнений в процессе бурения скважин на базе методов машинного обучения и современных нейросетевых моделей. Осложнения в процессе бурения, такие как поглощения, газонефтеводопроявления и прихваты, приводят к росту непроизводительного времени, т.е. времени которое не является технически необходимым для строительства скважины и вызывается различными нарушениями производственного процесса. Рассмотрено несколько различных подходов, в т.ч.